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a b s t r a c t

Periodic arrays of metallic nanoparticles may sustain surface lattice resonances (SLRs), which are

collective resonances associated with the diffractive coupling of localized surface plasmons resonances

(LSPRs). By investigating a series of arrays with varying number of particles, we traced the evolution of

SLRs to its origins. Polarization resolved extinction spectra of arrays formed by a few nanoparticles

were measured, and found to be in very good agreement with calculations based on a coupled dipole

model. Finite size effects on the optical properties of the arrays are observed, and our results provide

insight into the characteristic length scales for collective plasmonic effects: for arrays smaller than

� 5� 5 particles, the Q-factors of SLRs are lower than those of LSPRs; for arrays larger than � 20� 20

particles, the Q-factors of SLRs saturate at a much larger value than those of LSPRs; in between, the

Q-factors of SLRs are an increasing function of the number of particles in the array.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Sophisticated methods for manipulating light at the nanoscale
are increasingly developed in the field of metallic nano-optics [1].
Although metals may provide advantages over dielectrics asso-
ciated with the large electromagnetic enhancements they may
create [2], the high losses accompanying resonant effects pose a
serious challenge for their emergence as a viable technology [3].
The development of resonances with high quality factor Q is there-
fore of great relevance in the field of nanoplasmonics. One way to
minimize losses in plasmonic systems is based on collective reso-
nances [4], which leads to a modification of radiative damping—the
dominant contribution to the plasmon linewidth. In the case of
periodic arrays of metallic nanoparticles, it was calculated that near
the critical energy where a diffraction order changes from radiating
to evanescent in character, dipolar interactions would lead to the
emergence of a new, narrow linewidth plasmonic resonance [5].

Carron et al. seem to have been the first to investigate this
phenomenon experimentally [6], but the resonances were not as
sharp as predicted by the theory due to technological limitations
rendering imperfect structures. Schatz, Zou, and co-workers
revived the interest in these lattice-induced plasmonic reso-
nances with a series of theoretical papers mainly based on the
coupled dipole model (CDM). Extinction efficiencies higher than
ll rights reserved.
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30 were predicted [7], but experimental observation of these
narrow resonances remained elusive [8]. These resonances are
now known as surface lattice resonances (SLRs), and they have
been observed experimentally in the recent years by several
groups [9–12]. SLRs arise from the diffractive coupling of localized
surface plasmon resonances (LSPRs) of individual particles. This
coupling is mediated by Rayleigh anomalies, which correspond to
the condition whereby a diffracted wave propagates in the plane
of the array. The properties of SLRs, just as those of LSPRs,
generally depend on size, geometry and composition of the
particle, and on the surrounding medium and polarization of
the light field [9]. Moreover, due to their collective nature, SLRs
rely strongly on the interparticle distance and on the long-range
order in the lattice [13]. A question that remains open is how the
number of particles in the array influences the properties of SLRs.
Remarkable insight into this problem has been obtained for the
complementary structures of subwavelength hole arrays in
metallic films [14,15]. However, the influence of finite size effects
on the optical properties of nanoparticle arrays sustaining collec-
tive resonances has not been discussed yet. Although a similar
response is expected for nanohole and nanoparticle arrays based
on Babinet’s principle [16], we highlight that there is a funda-
mental difference between the two systems. Namely, whereas
radiative coupling in nanohole arrays may take place via surface
plasmon polaritons propagating through continuous metallic
films, nanoparticle arrays consist of isolated metallic islands that
may electromagnetically couple through diffraction.

In this paper, we present an experimental and theoretical
study on the evolution of SLRs as a function of the number of
particles in the array. We investigate finite size effects on the
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extinction spectra starting at the smallest array size, i.e., 2�2
particles. This work is organized as follows. In Section 2 we
describe the samples and experimental methods. In Section 3 we
provide an overview of the coupled dipole model (CDM), which
we use to calculate the extinction spectra of various arrays. In
Section 4 we compare the measurements to the CDM calculations.
2. Sample and experimental methods

A series of gold nanodisk arrays with dimensions of N�N

particles, N ranging from 2 to 10, were fabricated by electron
beam lithography onto an amorphous quartz substrate. The
nanodisks have a height of 50 nm, a diameter of 120 nm, and
they are arranged in rectangular arrays with lattice constants
ax¼500 nm and ay¼300 nm. In order to surround the arrays by a
homogeneous medium, we evaporated 150 nm of silica on top,
added index matching fluid of n¼1.45, and placed an amorphous
quartz superstrate identical to the substrate. The homogeneous
environment was created in order to enhance the diffractive
coupling of the particles [16].

A confocal microscope with a two-axis translation stage with a
precision of 200 nm was used for the extinction experiments.
A white light beam from a halogen lamp impinged from below
onto the samples at normal incidence, rendering a plane wave
excitation. The transmitted light was collected by the microscope’s
objective and directed into a fiber coupled spectrophotometer. The
polarization of the incident light was set parallel to the ay¼300 nm
pitch, so that diffractive coupling along the ax¼500 nm may take
place. In order to detect the full extinction of the incident plane
wave, the angle subtended by the detector should be sufficiently
small [17]. This translates into the requirement for a small numer-
ical aperture (NA) and a small aperture of the confocal pinhole in
the collection path, which poses a challenge for detecting the low
signals produced in extinction by small arrays. We used a 20� ,
NA¼0.4 objective, and a 60 mm confocal pinhole, which represents
an improvement relative to studies with a higher NA’s [10]. The field
of view (FoV) seen by the detector was determined by the knife-
edge technique, in which the transmitted power is measured across
the boundary between a transparent surface and a metallic layer;
we found a FoV¼ 6:070:5 mm.
3. Theory

The coupled dipole method (CDM) under the modified long
wavelength approximation (MLWA) is widely used for calculating
extinction spectra of nanoparticle arrays [18,7]. The CDM is based
on modeling each particle as a radiating dipole, and calculating its
interaction with the fields radiated by all other dipoles in the
array. We herein provide an overview of the CDM.

3.1. Polarizability of a single particle

Since no closed-form solution exists for the polarizability of
cylinders, the nanodisks are approximated as oblate spheroids
[19]. The static polarizability of an ellipsoid along one of its main
axes is given by

astatic ¼
ðEp�EdÞ

½3ðEp�EdÞ � Lþ3Ed�
� V , ð1Þ

with Ep and Ed the relative dielectric constants of the particle and
of the surrounding dielectric, respectively, V the volume of the
particle, and L a form factor for each of the three main axes of the
ellipsoid [20]. In the MLWA, the static polarizability is modified to
account for dynamic depolarization and radiative damping. This
polarizability is given by

a¼ astatic

1�
2

3
ik3astatic�

k2

r
astatic

, ð2Þ

where k¼ 2pn=l is the incident wave vector with l the vacuum
wavelength and n the refractive index of the surrounding dielec-
tric, and r is the radius of the main axis of the ellipsoid in the
direction of the polarization. The term 2

3 ik3astatic corresponds to
dynamic depolarization, and the term ðk2=rÞastatic accounts for
radiative damping [18].

3.2. Coupled dipole model (CDM)

From the polarizability ai at position ri of the array, the
polarization of the medium Pi can be calculated with the relation
Pi ¼ aiEloc,i, where Eloc,i is the local field, given by the sum of the
incident field and the fields scattered by all other particles. Under
plane wave illumination, the local field can be expressed as

Eloc,i ¼ E0eikri�
XN2

j a i
j ¼ 1

Aij � Pj, ð3Þ

where Aij represents the dipolar interaction between particles
i and j, and its dot product with Pj reads

Aij � Pj ¼ k2eikrij
rij � ðrij � PjÞ

r3
ij

þeikrij ð1�ikrijÞ
r3

ijPj�3rijðrij � PjÞ

r5
ij

ði,j¼ 1 . . .N2, ia jÞ ð4Þ

for an N � N particle array. The polarization vector ~P can be
calculated from

~E ¼
~~A0 ~P , ð5Þ

where the diagonal terms of
~~A0 are Aii ¼ a�1

i , and the off-diagonal
terms of

~~A0 are calculated from Eq. (4). From the polarization
vectors, the extinction cross section of the array can be calculated
using

Cext ¼
4pk

9E09
2

XN2

i ¼ 1

ImðEn

inc,i � PiÞ, ð6Þ

where En

inc,i is the complex conjugate of the incident field [17]. An
extinction efficiency Zext can be obtained by normalizing the
extinction of the array to the sum of the geometrical cross section
of the particles, i.e.,

Zext ¼
Cext

N2Ap

, ð7Þ

with Ap the cross sectional area of each particle.
In order to compare theoretical extinction spectra with experi-

mental transmittance spectra, we define the Extinction¼ 1�T,
with T the transmittance in the forward direction within the NA
of the objective. To obtain a transmittance from Eq. (6) that may
result in quantitative agreement with experimental data, the FoV

in the experiments needs to be considered. In our case, the FoV is
equal for all arrays, and larger than the largest array. This leads to
a transmittance given by

T ¼ 1�
Cext

FoV
: ð8Þ

Although the focus of the present work is on finite size effects
in nanoparticle arrays, it is instructive to assess how well the
response of very large, but finite, arrays converges to the response
of an ‘infinite’ array. For ‘infinite’ arrays illuminated at normal
incidence, Eq. (5) can be simplified assuming that the induced
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polarization in all particles is equal. This leads to an effective
polarizability a%, given by [7]

a% ¼
1

1=a�S
, ð9Þ

where S is the retarded dipole sum given by

S¼
X

ja i

ð1�ikrijÞð3 cos2 yij�1Þeikrij

r3
ij

þ
k2 sin2 yije

ikrij

rij
, ð10Þ

with yij the angle between rij and the polarization direction. Note
that S is a purely geometrical factor through which the lattice
modifies the polarizabilities of the individual particles, so that
when 1=a¼ S a pole in a% occurs, giving rise to a lattice-induced
resonance. Because a and S are in general complex numbers, strict
equality does not occur and a% remains finite. However, a
resonance indeed arises when the real part of 1=a�S vanishes.
Fig. 2. Coupled dipole model calculations for an array of 10�10 gold nanodisks.

(a) Variable angle extinction spectra and (b) the dashed and dashed–dotted curves

are cuts at y¼ 01 and y¼ 61 of (a), respectively, and the solid curve is the average

extinction between 01 and 61.
4. Results

Fig. 1 shows extinction spectra as obtained from measurements
(a), and CDM calculations (b), for the arrays described in Section 2. At
l� 780 nm we observe a peak gradually growing in extinction as the
array size increases. This peak is the SLR, becoming increasingly
sharper due to a collective suppression of radiative damping. The
local minimum seen in extinction at l� 745 nm corresponds to the
Rayleigh anomaly. We also note a secondary maximum in extinction
observed at l� 720 nm. Félidj et al., observed a similar feature which,
together with the primary resonance, they attributed to two dif-
fracted waves into different media [21]. However, the observation of a
very similar feature by Auguié and Barnes in a fully homogeneous
medium [9] questioned the explanation provided by Félidj et al. At
this point, we would like to clarify that to obtain the good agreement
between measurements and calculations seen in Fig. 1, we did not
use normally incident illumination alone. Instead, the spectra in
Fig. 1(b) were calculated by averaging the extinction over angles of
incidence between y¼ 01 and 61. This implies that the incident beam
in the experiment was not well collimated. The motivation to
angularly average the extinction spectra, and its connection with
the secondary minimum seen in Refs. [9,21], is discussed next.

Fig. 2(a) shows the calculated variable angle extinction efficiency
spectra for an array of 10�10 particles. Two sharp resonances are
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Fig. 1. (a) Measurements and (b) coupled dipole model calculations of the

extinction spectra of N�N gold nanodisk arrays, where N ranges from 2 to 10.
seen in the spectra, displaying an anti-crossing behavior near
normal incidence associated with their mutual coupling. The peak
in extinction at l� 780 nm and y¼ 01 is the SLR associated with the
(�1,0) diffraction order – this is the primary peak in the spectra of
Fig. 1(b). The peak in extinction at l� 700 nm and y¼ 61 is the
(þ1,0) SLR – this is the secondary peak in extinction. Thus, we
observe that the coupling between the (þ1,0) and (�1,0) SLRs leads
to the opening of a stop-gap in the dispersion relation of the array.
The mutual coupling between bright and dark SLRs (in ‘infinite’
arrays) and the consequent opening of the gap were recently
discussed [22]. By bright/dark it is meant that the resonance couples
efficiently/inefficiently to light, which results from a symmetric/
antisymmetric field distribution. Notice that only for angles of
incidence of y\21, the (�1,0) SLR center wavelength increases
with the angle. The flattening of the band observed near normal
incidence indicates a reduction of the mode’s group velocity and the
formation of standing waves. This is the origin of the high extinction
from the (�1,0) SLR at normal incidence, since the density of optical
states is enhanced at the band-edge. On the other hand, the (þ1,0)
SLR cannot be excited by a normally incident plane wave; a
narrowing of the plasmon linewidth and a diminishing extinction
are seen as the angle of incidence approaches y¼ 01. The observed
behavior is characteristic of subradiant damping, whereby radiative
damping is suppressed due to antisymmetric field distributions [4].
In Fig. 2(b) we display cuts in angle at y¼ 01, y¼ 61 of Fig. 2(a), and
average the spectra between y¼ 01 and y¼ 61. By comparing the
three curves in Fig. 2(b) with the experimental data in Fig. 1(a) for
the 10�10 array, it is clear that the best agreement between
measurements and calculations is obtained by assuming that the
incident beam contains a distribution of k-vectors, which on a best-
fit basis, we estimated to include angles of up to 61. Therefore, the
variable angle extinction spectra in Fig. 2 explain the features we
observe in the experiments, and also elucidate what is most likely
the origin of the secondary peak in extinction seen in Refs. [9,21],
and also in other studies [11], i.e., a non-perfectly collimated
incident beam.

As observed in Fig. 2 and discussed in Ref. [22], SLRs are Fano
resonances [23], i.e., asymmetric resonances molded by the
interference between two channels: the scattered intensity in
the plane of the array at the Rayleigh anomaly condition, and the
background transmission. Although Fano described quantum
interference phenomena, his model has found broad applicability
to classical systems also, and particularly in plasmonics [24,25].
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We have fitted the extinction efficiency spectra for each array
with a Fano equation of the form

Zeff ¼ C0
½qþ2ðo�o0Þ=G�2

1þ½2ðo�o0Þ=G�2
, ð11Þ

with C0 an amplitude constant, o0 the resonance center frequency,
and G the linewidth [26]. From the fitted values, we have calculated
a quality factor QSLR ¼o0=G, which is shown in Fig. 3(a) as a
function of the number of particles N along each dimension of the
array. This expression for the quality factor defines the ratio of the
stored to dissipated energy only in Lorentzian resonators. Never-
theless, we use it to characterize the spectral narrowing and to
obtain a qualitative insight into the suppression of radiative damping
as the size of the array increases. For comparison, we plot as
horizontal lines in Fig. 3(a) the calculated Q of a single particle, Qs,
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Fig. 3. (a) Calculated quality factor of SLRs (QSLR) as a function of the number of

particles (N) along each dimension of the array. (b) Calculated extinction spectra

for some of the arrays yielding the increasing QSLR in (a). (c) Calculated extinction

spectra of a single particle and an infinite array. The quality factors of the single

particle and the infinite array are indicated by the horizontal lines in (a).

Fig. 4. Total field enhancement (color scales) and scattered field (arrows) for an infinite

intersecting the nanodisks at their midheight. The illumination is a normally incident p

corresponds to the wavelengths of the LSPR and SLR, respectively. The polarization vect

indicated by the þ and � signs. (For interpretation of the references to color in this fi
and of an ‘infinite’ array, Q1. In Fig. 3(b) we show the extinction
spectra for some of the finite arrays to illustrate how the SLR
lineshapes evolve as N increases. In Fig. 3(c) we show the single
particle and ‘infinite’ array spectra; the latter was calculated using
Eqs. (9) and (10). Fig. 3 shows how the increasing extinction at the
SLR wavelength and the simultaneous spectral narrowing lead to an
increasing QSLR.

From the values reported in Fig. 3(a), we may identify three
regimes for QSLR: (i) for No5, QSLRoQs; (ii) for 5oNo20, QSLR

increases rapidly; and (iii) for N420, QSLR begins to saturate, slowly
approaching the value Q1 � 30 of the ‘infinite’ array. We understand
the evolution of QSLR through the three regimes as follows. In the first
regime, collective effects are weak. The extinction displays several
peaks of similar magnitude which together yield a ‘linewidth’
significantly broader than that of the single particle resonance. The
weak collective behavior is due to the large fraction of particles
located at the edges of the array. Although this regime was neither
measured nor identified in Ref. [27], the authors discussed the
underlying mechanism by which a decreasing array size leads to a
reduction in Q for a collective resonance: scattering losses at the
edges of the array. In the second regime, the fraction of particles at
the edges decreases and the number of particles resonating collec-
tively increases, which lead to a rapid increase in QSLR. In the third
regime, further addition of particles to the array does not affect
drastically QSLR. Although the in plane scattering losses continue to
diminish, the out-of plane scattering losses and material losses
become the dominant contribution to the linewidth. This can be
intuitively understood by considering the propagation lengths for the
surface polaritons associated with SLRs. In Ref. [28], propagation
lengths on the order of � 10 mm were found for similar arrays of
gold nanoparticles. In the present work, diffractive coupling takes
place along the ax¼500 nm pitch of the structure, which means that
10 mm corresponds to 20 unit cells. Not coincidentally, QSLR begins to
saturate near N¼20. Since further addition of particles does not
contribute significantly to the extinction, the arrays become effec-
tively ‘infinite’.

Fig. 4 shows results from finite element method (FEM) simula-
tions (COMSOL) for an ‘infinite’ array of nanodisks as those in the
measurements and CDM calculations. Periodic boundary conditions
array of gold nanodisks surrounded by amorphous quartz. Both plots are at a plane

lane wave with a vacuum wavelength of (a) l¼ 670 nm and (b) l¼ 780 nm, which

or is along the same axis as the excited dipole moment in the individual particles,

gure legend, the reader is referred to the web version of this article.)
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were used, and the particles are illuminated by a normally incident
plane wave. The transmittance spectra was first calculated, and it
was found to be in excellent agreement with the ‘infinite’ array
spectra obtained from the CDM (Fig. 3(c)). In Fig. 4, we present the
field enhancement (in color scale) and the scattered field (arrows) at
a plane intersecting the particles at their midheight, for two values of
the vacuum wavelength. Fig. 4(a) shows the spectra at l¼ 670 nm,
which corresponds to the broad and weak feature seen in extinction.
As it can be recognized from the field pattern, a dipolar resonance is
excited in the individual particles. A small field enhancement is
observed near the surface of the particles, but the region in between
the particles exhibits field suppression. The particles are therefore
individually resonant with the incident field and there is no collective
behavior. This is the typical behavior of LSPRs. In Fig. 4(b) we show
the fields at l¼ 780 nm, which corresponds to the SLR wavelength.
Notice that a dipolar resonance is excited as well, having an almost
identical radiation pattern to that in Fig. 4(a), but with two important
differences: the field enhancements are much larger (almost by an
order of magnitude), and the scattered intensity in the area between
the particles is much higher. This has important consequences for
applications in sensing and modified spontaneous emission where
molecules may profit from a high density of states over extended
volumes.

In conclusion, we have demonstrated finite size effects in the
optical properties of metallic nanoparticle arrays. The critical
length scales over which collective effects are important were
discussed. We have identified an array size-dependent quality
factor for surface lattice resonances arising from the diffractive
coupling of localized surface plasmons (QSLR). QSLR is lower than
the Q of the single particle resonance for arrays smaller than 5�5
particles. For arrays sizes between 5�5 and 20�20 particles,
QSLR dramatically increases beyond the value of Qs, saturating for
larger arrays.
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